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Our MSAD-funded research project is to provide numerical modeling support for the VIBES

(Vibration Isolation Box Experiment System) which is an IML2 flight experiment being built

by the Japanese research team of Dr. H. Azuma of the Japanese National Aerospace

Laboratory. During this reporting period, the following have been accomplished:

A Semi-Consistent Mass Finite Element Projection Algorithm For 2D And 3D

Boussinesq Flows Has Been Implemented On Sun, HP And Cray Platforms.

a. The algorithm has better phase speed accuracy than similar finite difference or

lumped mass finite element algorithms, an attribute which is essential for

addressing realistic g-jitter effects as well as convectively-dominated transient

systems.

The Projection Algorithm Has Been Benchmarked Against Solutions Generated Via
The Commercial Code FIDAP.

a. The algorithm appears to be accurate as well as computationally efficient.

3. Optimization And Potential Parallelization Studies Are Underway.

a. Our implementation to date has focused on execution of the basic algorithm with
at most a concern for vectorization.

4. The Initial Time-varying Gravity Boussinesq Flow Simulation Is Being Set-up.

So

a° The mesh is being designed and the input file is being generated. Some

preliminary "small mesh" cases will be attempted on our HP9000/735 while our

request to MSAD for supercomputing resources is being addressed.

The Japanese Research Team For VIBES Was Visited, The Current Set-up And Status

Of The Physical Experiment Obtained And Ongoing E-Mail Communication Link
Established.
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Our MSAD-funded research is to provide numerical modeling support for the

VIBES (Vibration Isolation Box Experiment System) which is an IML2 flight experiment

being built by the Japanese research team of Dr. H. Azuma of the Japanese National

Aerospace Laboratory. This request of scientific computing resources is made to support

flow and transport modeling for ground base pre-flight experimental design and

validation experiments, post-flight data analysis as well as an assessment of the potential

of using data and hardware for future flight experiments. In order to accomplish these

goals, the transient Navier-Stokes and/or Boussinesq equations in three space dimensions

including a complicated time varying gravitational body force must be solved. A new

semi-consistent mass projection algorithm has been developed to generate time-accurate

solutions. This algorithm has better phase speed accuracy than similar finite difference or

lumped mass finite element algorithms and appears to be very efficient computationally,

both necessary attributes for addressing realistic g-jitter effects as well as transient

systems dominated by convective transport. (A brief description of the project and

algorithm are in Appendix 1.) The development and preliminary benchmarking of the

algorithm has been done on our HP9000 workstation, but access to a supercomputer

platform is essential to support the very large 3D transient simulations especially

necessary in the post-flight data assessment and in new experiment assessment; such

simulations even when theoretically possible on a workstation are practically intractable

because of the amount of computational time required. The algorithm has been designed

such that the porting to a supercomputer such as a CRAY Y-MP will be very easy as will

be the efficient use of its vectorization capability. Parallelization is an issue which we are

currently addressing; the possibility of utilizing the efficient NASA parallel-vector direct

solution algorithm due to Storaasli et. al. is already incorporated. Other parallelization

via iterative solvers will eventually be addressed but only aggressively at a later date

because of the time-line constraint of our MSAD project. The algorithm on the CRAY

Y-MP is dynamically dimensioned and for the types of 3D meshes which seem to be

appropriate for production runs, we will require approximately 64 megawords and an

estimated 100 hours of computing time for algorithm porting enhancement, optimization

and the production runs. The latter is difficult to estimate because of our desire to use an

actual filtered g-jitter signature in the post-flight stage of the project.
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PROJECT DESCRIPTION

A. Introduction

In a terrestrial environment, natural convection and concomitantly the heat and mass

transport processes intimately associated with it can sometimes have a deleterious effect on a

process; for example, in materials processing where it, in conjunction with other effects such as

walls or moving interfaces, can lead to radial segregation and dopant striations in the product

material. In view of this, there has been a desire to use the space environment in order to reduce

natural convection and other gravitational effects as well as make containerless processing more

viable. In many cases, the ensuing dominance of surface-tension-driven flows in a micro-gravity

environment has led to a significant number of similar as well as new problems. To further

complicate matters, the micro-gravity environment available is not quiescent but is subjected to

significant background vibrations generated by aerodynamic, structural and machinery vibrations,

crew motion, etc. Such g-jitter can be relatively random in orientation and attain significant

magnitudes such as 10-2go (go = earth g) experienced during thruster f'u'ing on the D1 mission to

the less significant 10-Sg o experienced on the SPAR-X free flyer. There is a growing list of

observations and data analyses that demonstrate the existence of significant g-jitter episodes and

the potential for having very deleterious effects on many proposed flight experiments as well as

negate the potential of a micro-gravity environment. In addition, numerical and analytical

modeling studies suggest that g-jitter effects could seriously affect many micro-gravity

experiments as well as possibly space commercialization ventures, especially in the materials

science area. An interesting potential solution to this problem in the micro-g environment

available on shuttle flights or planned on Space Station Freedom is the use of vibration isolation

for the experiments and processes which require it. The assessment of such an apparatus is one

of the main thrusts of the research proposed herein.

The experiment VIBES (Vibration Isolation Box Experiment System) is an IML2 flight

experiment being designed by a Japanese research team under the direction of Dr. Hisao Azuma

of the Japanese National Aerospace Laboratory. Its basic objective is to assess the performance

of a vibration-isolation device in conjunction with typical micro-g fluids experiments. The

device has been specifically designed for the low frequency range which appears to be most

deleterious to many micro-g experiments, especially those material science experiments dealing

with coupled flow and transport processes and could provide a relatively simple and economical

means of dealing with such g-jitter problems. The IML2 flight experiment will contain two

experimental units:

1. Convection Diffusion Unit (CDU)

2. Thermal-Driven Flow Unit (TDFU)

The CDU experiment is the one of interest herein; the main objectives of this experiment

are to observe natural convection and diffusive transport in a micro-g environment and to

observe the effect of a g-jitter with and without the vibration isolation due to the vibration

isolation box. The semi-consistent mass projection method algorithm summarized hereafter has

been inplemented to provide flow and transport modeling capability for ground-based experiment



designand validationandpost-flight dataanalysisaswell asan assessmentof the potential of
usingthe dataandhardwarefor a futureflight experiment. It is designedto solve the transient
Navier-Stokes,or Boussinesqequationsin two or three spacedimensions. Time accurate
solutionsareobtainedby using a semi-consistentmassprojection algorithm [Gresho(1990)].
Theoreticallythis algorithm hasbetterphasespeedaccuracythan similar finite difference or
lumped mass finite element algorithms,a property which is very desirablefor the g-jitter
simulationsbeingaddressedaswell asotherconvectivetransportdominatedsystems.

CONTINUUM MODEL

In terms of the Boussinesq equations, the appropriate continuum equations for the

velocity (u), temperature (T), and kinematic pressure (P) are:

_U
--+u. Vu =-VP+vV:u+f , in_ (la)
_t

u

V.u=0 , in f_ (lb)

_)T

pCp (-_-t + u. VT) = kV2T+q

The vectorf represents body forces, for example, buoyancy,

in _ (lc)

(0o
uf_-uoyancy = gPo

where g is the gravitational vector which in our case will be time-dependent, v is the kinematic

viscosity, 19(p,,) is the density (reference density), Cp is the specific heat and k is the thermal

conductivity. If the boundary of _ is designated by _)f2 = F_ @ 1"2 , then typical appropriate

boundat3' conditions are specified velocity and temperature (Dirichlet):

u =w , T = TB (ld)

on F_ and 'pseudo traction' and specified flux conditions (Neumann)

_ 3u. onu,
-r+v--_n = F, and v--_-x = F_. (le)

k bT
-_n = h(T-T.)+q



on F 2 . Here n represents the outward normal direction, u. = u. n is the normal component of

velocity, x represents the corresponding tangential direction, u, =u.x is the tangential

component of velocity and F, and F_ are the normal and tangential components of the specified

boundary traction. (All combinations of BC's (Equations lc and ld) are possible in three-

dimensional simulations))

To complete the problem specification, initial conditions must be specified:

u(x,0) =Uo(X) (1_

T(x,0) = To(x)

The initial velocity field is required to satisfy the following conditions:

n.u o = n. w(x,0) on r I and (lg)

V-u o = 0 in f2 (lh)

in order that a solution exists [Gresho and Sani (1987)].

conservation

Should F_ - 0 f_, global mass

_n. w(x, t)=O (li)
St'/

is an additional solvability constraint.

The continuum version of the projection technique is a finite element discretization (with some

modifications) of those proposed by Van Kan (1986) and Bell and Marcus (1990) as described in

Gresho (1990). The algorithm is:

0) Given u 0 with V.u 0 =0 and Po ,

1) Solve for fi and "]', with rio = Uo and T = T Oat t=O from

mbfi + fi •Vfi - vV"fi = f- VP o ,
_t

in f_ (2a)

C" 0_ -.VT)=kV>F+q
p p (--_- + u

in f_ (2b)

fl=W and "]'=Ts, on FI, (2c)



va "= F.(t)+Po and
3n c)'t =F'(t) ' °nF2

k _nn = h (q2 - T, ) + q

(2d)

for 0 < t < t_, where [0,t_ ] is the time span between two projections.

velocity fi is not divergence free, solve the following least squares problem at projection time T"

Extremize:

1

G(v, q0) ---5-_(v - fi)r (v - £1)-¢prv. v

Subject to appropriate boundary conditions;

i.e., set the first variation equal to zero to obtain (after an integration by parts):

(v-fi)+Vq0=0 and

V-v=0 infl,

withn.v=n-fi onF_ and

or in practice,

2) Solve for tp from

subject to

q)=-_-[F.(t,)+Po] on 1"2.

V"q0 = V. ii in f_ ,

and

t I
¢p= -_[F. (t,)+ Po]

Z
on F 2.

compute v = fi(T)-Vq0 in D

Since the intermediate

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

3) (4)

4) Estimate a new pressure: P(T)= Po+ 2q0 / t_ in D (5)



5) Report v and P; then set t=-0, P0 = P(q ), u0 = v in _ and go to step 1.

DISCRETIZATION

The continuum formulation is discretized in space via a Galerkin finite element method. For

efficiency, the finite element representation is restricted to four node (in 2D) or 8 node (in 3D)

elements for velocity and temperature and a piecewise constant pressure approximation. Even

though these element combinations are degenerate, i.e., the velocity-pressure basis function

combination possesses a null space, it is easily accommodated [Sani, Gresho, Lee and Griffiths

(1981)]. The use of a basic Galerkin finite element discretization technique automatically

accommodates complex spatial domains and the complex boundary conditions on F, which are

natural boundary conditions in the weak Galerkin finite element formulation.

The continuous-in-time Galerkin finite element spatial discretization is then temporally

discretized using the Leismann scheme. [Leismann and Frind (1989)] which is second-order

accurate and unconditionally stable in the form implemented but a bit dissipative or the Gresho

and Chan (1990) scheme which is similar but less dissipative. The discrete system for each time

step of the Leismann scheme is:

(1M.. t. D +IDBTD)i Lli _(1 M- V--1DBTD)iUoi-MM_ (CiPo-fo_(T)), i = 1, 2,3At 2

(6a)

and

(1 M+ D + 1 DBTD)T = (1M-V-1DBrD)To +qo
(6b)

(CTM_'C)_ = Crfi (7)

for (p needed to project the intermediate velocity ii to the weakly divergence free subspace, i.e.,

the final, weakly divergence free velocity u after a time step is

u = ii - MLICq_

and the corresponding pressure field is:

(8)

P = P0 + 2¢p / At (9)

The various element matrices M, D, DBTo V and M L are defined in Gresho and Chan

(1990). The two most noteworthy features of this discretization are:



1. The consistentmassmatrix M is used in the conservationof momentum and energy

equations(6a,b)but lumpedmassmatrix Mr. in the solenoidalvelocity constraintequation
(7).

2. Thediscretizedsystemof uncoupledalgebraicequations(6a, i.e. 1,2,3;6b)arelinear
symmetricpositivedefinitesystems.

Feature(a) leadsto phasespeedaccuracywhile maintainingcomputationalefficiency. Feature
(b) allows theutilization of computationaUyefficient interativesolverssuchaspre- conditioned
conjugategradientsolversor, for example,the PVS-solver[Storaasliet. al.] (1990) which is a
vectorized-parallelizedefficientdirectsolutiontechnique.

IMPLEMENTATION

The algorithm has been implemented on HP9000/735 and SUN/10 workstations and has

been benchmarked against solutions to both Navier-Stokes and Boussinesq flows generated via

the commercial code FIDAP [Engelman (1993)]. The current version utilizes primarily a pre-

conditional conjugate gradient solver and a constant time step scheme with a variable time step

version under development. The algorithm has been structured for easy vectorization and the

possibility of also addressing the issue of parallelization, via the Storaasli algorithm initially and

other iterative techniques eventually.
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